
Are Containers Dying? Rethinking 
Isolation with MicroVMs
Muhammad Yuga Nugraha

1



Agenda

1

2

3

4

How we run applications today

Why are we still using containers today?

What microVM bring to the table

The challenges

2



How we run applications today

Monolith Architecture

UI

Business Logic

Data InterfaceDatabase

Application

3



How we run applications today

Service A Service B Service C

Database A Database B Database C

Microservice Architecture

4



How we deploy applications today

5

Virtual Machine (VM)

Application Code

Web server

Instance



How we deploy applications today

6

Container

Application Code

Web server

Instance

Build

Container Image



7



Virtual Machine (VM) - The Good

1 Emulates full physical hardware

2 Strong isolation with its own kernel and OS

3 Allows running multiple OS on a single physical host

4 Suitable for legacy apps

8



Virtual Machine (VM) - The Bad

1 Heavy resource

2 Long boot times

3 Not ideal for scaling

9



Container - The Good

1 Process isolation using a shared kernel

2 Build once, run anywhere

3 No need for a hypervisor

4 Fast startup

5 Scalable with orchestrator

10



Container - The Bad

1 Shares the host kernel (weaker isolation)

2 Not ideal for untrusted workloads

3 Security misconfigurations are common

4 One container can slow down others

5 Not great for apps that expect a full OS

11



Docker

Source: https://docs.edera.dev/concepts/vm-containers/

12

https://docs.edera.dev/concepts/vm-containers/


13



microVM - The Good

1 Strong isolation with less overhead

2 Fast startup (milliseconds)

3 Minimal attack surface

4 Multi-tenancy

14



15



microVM - The Bad

1 Rarely used in general workloads

2 Less ecosystem support

3 Tooling is limited

4 Not easy to integrate

5 Not developer-friendly

16



Firecracker microVM

17



Apple Container

Source: https://docs.edera.dev/concepts/vm-containers/

18

https://docs.edera.dev/concepts/vm-containers/


Why isolation matters now

19



Multi-tenancy

User A User B

User C User D

20



1 Sharing resources (CPU, memory, storage)

2 Saves cost by reducing the number of systems needed

3 Add new users or customers without setting up new servers

4 Easy maintenance, update once for all tenants

Multi-tenancy

21



Security in multi-tenancy

User A User B

User C User D

Attacker

22



User A User B

User C User D

Single-tenancy

23



1 Own dedicated resources and full control

2 Higher cost because each user needs dedicated resources

3 Setting up new servers to add new users or customers

4 Update each system separately

Single-tenancy

24



User A User B

User C User D

Security in single-tenancy

Attacker

25



Attacker focus on breaking isolation boundaries

26



27



Why are we still using containers today?

28



What problems does it solve?

1 Starts quickly, often within seconds

2 No more “it works on my machine”

3 Split apps into smaller pieces, easier to manage and update

4 Provides isolation for security and stateless

29



What microVM bring to the table

30



Meet “Firecracker”

1 Open-source virtualization technology developed by Amazon

2 Powers AWS Lambda and AWS Fargate

3 Built on Linux KVM and written in Rust

4 Combines VM-level isolation with container-like speed

31



AWS Lambda

Source: https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-executions.html 

32

https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-executions.html


AWS Lambda

33



34



35



Firecracker in Action

Socket

Host

VM

Linux bridge

Kernel

Application

Firecracker

/boot-source 
/drives/{drive_id} 
/network-interfaces/{iface_id} 
/actions

PUTCreate

Iptables

TAP device

/dev/kvm

36



37



1 Fast like container, isolated like VM

2 Multi-tenancy with single-tenancy-level isolation

3 Minimal attack surface for better security

38



Who are using Firecracker?

39



CodeSandbox - Instant Cloud Development Environments

40



E2B - Code Interpreting for AI apps

41



Vercel - Hive

Source:https://vercel.com/blog/a-deep-dive-into-hive-vercels-builds-infrastructure

42

https://vercel.com/blog/a-deep-dive-into-hive-vercels-builds-infrastructure


43



Firecracker isn’t the only microVM out there

44



1 Not developer friendly

2 Integration is more complex

3 Limited ecosystem and tooling unlike other technology

4 Less adoption and community support

5 Runs only on KVM (though PVM is an alternative option)

6 And many more…

45

The challenge(s)



1 VM offers strong isolation, containers are fast and both have trade-offs

2 microVM bridge the gap, combining VM isolation with container speed

3 Ideal for serverless, CI/CD pipelines, and short-lived workloads

4 Could microVM be the future of how we run workloads?

Recap

46



QnA

47


