Are Containers Dying? Rethinking
Isolation with MicroVMs

Muhammad Yuga Nugraha

Agenda

How we run applications today
Why are we still using containers today?
What microVM bring to the table

The challenges

How we run applications today

Application

©

Database

Monolith Architecture

How we run applications today

Database A Database B Database C

Microservice Architecture

How we deploy applications today

Instance

Virtual Machine (VM)

How we deploy applications today

Instance

Container

Virtual Machine (VM) - The Good

Emulates full physical hardware
Strong isolation with its own kernel and OS
Allows running multiple OS on a single physical host

Suitable for legacy apps

Applica‘tion

1

Libraries

Guest kernel “ Guest kernel J

Host kernel

Virtual Machine (VM) - The Bad

| Heavy resource

|
ﬁ
=

1 Long boot times

Libraries

Apphca‘tion
Apphca\t?on

<1 Notideal for scaling

Guest kernel I Guest kernel J

Host kernel

M =

o >

Container - The Good

Process isolation using a shared kernel
Build once, run anywhere

No need for a hypervisor

Fast startup

Scalable with orchestrator

10

Apphca‘b?on

Libraries

—|

Applica‘bion
Libraries

Container

[

Container '

Host kernel

Container - The Bad

Shares the host kernel (weaker isolation)

=]

Not ideal for untrusted workloads

Libraries
Libraries

Security misconfigurations are common

One container can slow down others | |
Container Container

Not great for apps that expect a full OS V., Host kernel

Apphca‘t%on
Applica‘tion

[

11

Docker

Client } (DOCKER_HOST)
docker build /,)— Docker daemon - NIA
) N, ' %,
) \ Y|
docker pull -| | ¢ :
/
docker run —7 NGinNX

00eg!

Source: https://docs.edera.dev/concepts/vm-containers/

12

https://docs.edera.dev/concepts/vm-containers/

1'

r;‘I(:I'IIVM"

MmicroVM - The Good

Strong isolation with less overhead
Fast startup (milliseconds)
Minimal attack surface

Multi-tenancy

14

Search Results

There are 4 CVE Records that match your search.

Name Description

CVE-2020-27174 In Amazon AWS Firecracker before 0.21.3, and 0.22.x before 0.22.1, the serial console buffer can grow its memory usage
without limit when data is sent to the standard input. This can result in a memory leak on the microVM emulation thread,
possibly occupying more memory than intended on the host.

CVE-2020-2025 Kata Containers before 1.11.0 on Cloud Hypervisor persists guest filesystem changes to the underlying image file on the host. A
malicious guest can overwrite the image file to gain control of all subsequent guest VMs. Since Kata Containers uses the same VM
image file with all VMMs, this issue may also affect QEMU and Firecracker based guests.

CVE-2020-16843 In Firecracker 0.20.x before 0.20.1 and 0.21.x before 0.21.2, the network stack can freeze under heavy ingress traffic. This can
result in a denial of service on the microVM when it is configured with a single network interface, and an availability problem for
the microVM network interface on which the issue is triggered.

CVE-2019-18960 Firecracker vsock implementation buffer overflow in versions 0.18.0 and 0.19.0. This can result in potentially exploitable crashes.

15

microVM - The Bad

Rarely used in general workloads
Less ecosystem support

Tooling is limited

Not easy to integrate

Not developer-friendly

16

Firecracker microVM

Firecracker Firecracker Firecracker Firecracker
Orchestrator MicroVM 1 MicroVM 2 MicroVM n

Host Zone

17

Apple Container

Docker

Container

Container

Container

Shared Kernel

SECRET_TOKEN=abc123

v

Cloud VM/VM/Bare Metal

Apple Containerization

Micro VM | | Micro VM | | Micro VM
Container Container Container
Kernel Kernel Kernel
v v v

Virtualization Framework

v

Apple Silicon

Source: https://docs.ederadev/concepts/vm-containers/

18

https://docs.edera.dev/concepts/vm-containers/

Why isolation matters now

Multi-tenancy

_

User A

User C

User B

User D

& B

J

20

Multi-tenancy

Sharing resources (CPU, memory, storage)
Saves cost by reducing the number of systems needed
Add new users or customers without setting up new servers

Easy maintenance, update once for all tenants

21

Security in multi-tenancy

. User A User B
- . .

User C User D

_ J

22

Single-tenancy

User A

User C

23

User B

User D

Single-tenancy

Own dedicated resources and full control

Higher cost because each user needs dedicated resources
Setting up new servers to add new users or customers

Update each system separately

24

Security in single-tenancy
a) 4

. | . .

Attacker User A User B
_ Y, _ J

User C User D

9

O

9

25

Attacker focus on breaking isolation boundaries

BLOG g RESEARCH POD FEB 07, 2024

‘Leaky Vessels’ Docker Vulnerabillities

Found in Many Cloud Environments:
RunC (60%) and BuildKit (28%)

CVE-2024-1753 container escape at build time

TomSweeneyRedHat published GHSA-pmf3-c36m-g5cf on Mar 18, 2024

Package Affected versions Patched versions
buildah 1.35.0 through and including 1.35.1, 1.34.3, 1.33.7, 1.32.3,
v1.24.0 1.31.5, 1.29.3, 1.27.4, 1.26.7,
< Blog

NVIDIAScape - Critical NVIDIA Al
Vulnerability: A Three-Line Container
Escape in NVIDIA Container Toolkit (CVE-
2025-23266)

New critical vulnerability with 9.0 CVSS presents systemic risk to the Al ecosystem, carries widespread implications for Al
infrastructure.

27

Why are we still using containers today?

CONTAINERS, CONTAINERS

B
4

EVEBYWHEBE

What problems does it solve?

Starts quickly, often within seconds
No more “it works on my machine’

Split apps into smaller pieces, easier to manage and update

Provides isolation for security and stateless

29

What microVM bring to the table

Meet “Firecracker”

Open-source virtualization technology developed by Amazon
Powers AWS Lambda and AWS Fargate

Built on Linux KVM and written in Rust

Combines VM-level isolation with container-like speed

31

AWS Lambda

KVM on Bare Metal EC2

Firecracker MicroVM
MicroVM Kernel
Lambda Sandbox
Execution Environment

CustomerA CustomerA
Function code /tmp

[Layer code]

Runtime
Language

Firecracker MicroVM | Customer A's function
MicroVM Kemel
Customer B's function
Lambda Sandbox —
| - Execution Environment Ahxga&ergb%ya

CustomerB CustomerB|
Function code /tmp

{ Layer code]

Runtime
Language

Source: https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-executions.html

32

https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-executions.html

AWS Lambda

Customer Customer Customer Customer Customer
Code Code Code Code Code

Lambda Lambda Lambda Lambda Lambda
Env Env Env Env Env

Firecracker Firecracker Firecracker Firecracker Firecracker

Hardware

33

root@firecracker:~# free -h

total used free shared
Mem: 62G1 1.2G1 60G1 4.2M1
Swap: OB OB OB
root@firecracker:~# ssh -1 1d rsa root@l72.16.0.2
root@nicole_perry:~i# free -h

total used free shared
Mem: 486M1 44AM1 399M1 1.9M1
Swap: OB OB OB

root@nicole_perry:~i I

34

buff/cache
19361

buff/cache
55M1

availlable
61G1

avallable
441M1

root@cplanel:~# free -h

total used shared buff/cache avalilable
Mem: 3.8G1 723M1 1.6M1 136G 3.1G1
Swap: OB 0]5]
root@cplanel:~# lsmod
Module Size Used by
xt_statistic 16384 3
nf_conntrack_netlink 45056 0
Xt _mark 16384
xt _nfacct 16384
nfnetlink_acct 16384 xt_nfacct
ip6table filter 1638
ip6table_mangle 16384
Xt _comment 16384
ip6table nat 16384
vxlan 81920
1p6_tables 32768 ip6table_filter,ipétable_nat,ipétable_mangle
br netfilter 28672
overlay 114688
fuse 118784
configfs 32768
autofs4 28672
root@cplanel:~# kubectl get po -A
NAMESPACE NAME STATUS RESTARTS AGE
kube-flannel kube-flannel-ds-hxqh8 Running 29s
kube-system coredns-674b8bbfcf-bwgéb Running 4m53s
kube-system coredns-674bh8bbfct-fmjp2 Running 4m53s
kube-system etcd-cplanel Running 5m
kube-system kube-apiserver-cplanel Running 4m58s
kube-system kube-controller-manager-cplanel Running 4Am58s
Kube-system Kube-proxy-rtwow Running 4m53s
kube-system kube-scheduler-cplanel Running 4Am58s
root@cplanel: ~i# I

oo ool ol oo

35

Host

Firecracker in Action

Firecracker

Linux bridge

[boot-source

— _Criati — Socket [_PET_ < [drives/{drive_id}
[network-interfaces/{iface_id}
[actions
- -
I
I
I
[dev/kvm
I
I
VM L
(- - - - - -/ - - - - = \
Iptables < — 1 | I
| I Application I
— — — - >[TAP device](— — = —— - |
: |
I Kernel I
: |
: |

36

(G, (F
| { i

& %

Ry T

(venv) root@firecracker:~if I

Fast like container, isolated like VM
Multi-tenancy with single-tenancy-level isolation

Minimal attack surface for better security

38

Who are using Firecracker?

CodeSandbox - Instant Cloud Development Environments

|:| v CodeSandbox was updated! > 8 Synced Devbox Python v 0 VS Code Share Signin v

EXPLORER D README.md = New Devtool X | O g

TEMPLATE INFO @& README.md

SANDBOX

> .codesandbox Python Starter

> .devcontainer

» main.py
README.md

requirements.txt

Quickly get started with Python using this starter!

e |f you want to upgrade Python, you can change the image in the Dockerfile.

[©® Documentation

PROBLEMS OUTPUT TERMINAL PORTS Slleen v/ a7 2 OF 00 0

Executing task: CodeSandbox: start

[CODESANDBOX] Preparing devcontainer configuration and overrides
Hello CodeSandbox!
F Terminal will be reused by tasks, press any key to close it.

> OUTLINE

> CodeSandbox - Devbox (Web)

40

E2B - Code Interpreting for Al apps

cat main.py
from dotenv import load_dotenv
load dotenv ()
from e2b_code_interpreter import Sandbox

sbx = Sandbox() # By default the sandbox i1s alive for 5 minutes

files = sbx.files.read("/etc/os-release")
print(files)

> python3 main.py
PRETTY_NAME="Debian GNU/Linux 12 (bookworm)"
NAME="Debian GNU/Linux"
VERSION ID="12"
VERSION="12 (bookwoxrm)"
VERSION_ CODENAME=bookworm
ID=debian
HOME_URL="https://www.debian.oxrg/"
SUPPORT_URL="https://www.debian.oxg/support"”
BUG_REPORT_URL="https://bugs.debian.oxrg/"

41

AVercel

Products v

Solutions v

Vercel - Hive

Resources v Enterprise Docs Pricing Log In

How Hive components work together

The inner workings of Hive is an orchestrated system that ensures secure, isolated, and
efficient execution of customer builds. At the core, each box in Hive runs a Kernel-based
Virtual Machine (KVM), which is a full virtualization solution for Linux on x86 hardware.
By leveraging KVM, we can run multiple virtual machines, each with its own unmodified
Linux image, on a single box. This setup allows each VM to have private virtualized
hardware, providing isolation and security between tenants.

On top of this KVM layer, we run multiple Firecracker processes. Firecracker is an open-
source virtualization technology—nbuilt for creating and managing secure, multi-tenant
containers and function-based services within microVMs. In Hive, these microVMs are
called cells. Each cell is mapped directly to a Firecracker process, this 1:1 relationship
ensures that each VM is fully managed by its corresponding Firecracker process.

Managing this complex orchestration is a box daemon that runs on each box. The box
daemon is responsible for provisioning block devices, spawning Firecracker processes,
and managing communication with the cells. It coordinates the setup and lifecycle of
each cell by communicating with a cell daemon inside the cells through a dedicated
socket connection.

Source:https://vercel.com/blog/a-deep-dive-into-hive-vercels-builds-infrastructure

42

Contact Sign Up

https://vercel.com/blog/a-deep-dive-into-hive-vercels-builds-infrastructure

Vercel + Follow
161,051 followers

8mo-®

A year with Hive: The compute platform behind Vercel builds.

- +30% faster build speeds
- Secure, isolated code environments
- Scales automatically from zero to millions

Here's how it works.

https://Inkd.infgTNGvpr6

A

A deep dive into Hive: Vercel's builds infrastructure -
A deepdiveinto

Hive: Vercel’s builds Vercel
infrastructure

vercel.com

43

Firecracker isn't the only microVM out there

@ katacontainers Cl’(-)\L\Jd

Hypervisor

44

The challenge(s)
Not developer friendly
Integration is more complex
Limited ecosystem and tooling unlike other technology
Less adoption and community support

Runs only on KVM (though PVM is an alternative option)

And many more...

45

Recap

VM offers strong isolation, containers are fast and both have trade-offs
microVM bridge the gap, combining VM isolation with container speed
Ideal for serverless, CI/CD pipelines, and short-lived workloads

Could microVM be the future of how we run workloads?

46

